
ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-378: Computer Hardware Design Winter 2017

1 Instructor: Daniel Llamocca

External Peripherals: Interfacing

SERIAL COMMUNICATION

SERIAL DATA TRANSMISSION WITH UART

UART INTERFACE
 This interface transfers data asynchronously (clock is not transmitted,

transmitter and receiver use their own clocks).
 Data communication: RXD (receive pin), TXD transmit pin). The FT2232 chip

inside the Nexys-4 board handles the USB communication with a computer.
 Format of a Frame: Start bit (‘0’), 8 to 9 data bits (LSB transmitted first),

optional parity bit, and a stop bit (‘1’).
 Transmitter: Simple design that transmit the data frame at the Baud rate (or bit rate in bps).
 Receiver: It uses a clock signal whose frequency is a multiple (usually 16) of the incoming data rate.

DIGITAL SYSTEM: UART TRANSMITTER (FSM + Datapath circuit)
 For a baud rate of 9600 bps, the Baud rate clock is 9600 Hz.

 𝑁 =
1

9600⁄

10 𝑛𝑠
= 10416. This number changes according to the

desired baud rate.
 Counters: E=1  Q  Q+1. E=sclr=1  Q  0. Note that the

way the counters are designed, once the maximum count is
reached, asserting the enable to ‘1’ resets the count to 0.

Baud rate clock

TXD DO D1 D2 D3 D4 D5 D6 D7 stopstart

TXD

FT2232

RXD

Artix-7 FPGA

C4

D4 (TXD)

(RXD)
Micro

USB

FSM
LR
ER

zC

Q n

counter
0 to N-1

zC

E

sclr

EC

RIGHT SHIFT

REGISTER
s_L
E din

SW

8

0

Q 3

counter
0 to 7

zQ

E

sclr

EQ

00

8

zQ

EC

EQ

dout

TXD

clock

resetn

E

so

S1

S2

resetn=0

TXD  1

TXD  1

1

0

LR, ER  1

EC  1 (C C+1)

0

1

S3

TXD  0

1

zC
0

EC  1 (C 0) If max count is reached,
EC=1 makes C=0

EC  1 (C C+1)

S4

TXD  so

1

zC
0

EC  1 (C 0), ER  1

EQ  1 (Q Q+1)

1

zQ
0

EQ  1 (Q 0)
If max count is reached,
EQ=1 makes Q=0

EC  1 (C C+1)

S5

TXD  1

1
zC

0
EC  1 (C 0)

STOP bit

START bit

8 DATA
bits

E

E

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-378: Computer Hardware Design Winter 2017

2 Instructor: Daniel Llamocca

SPI (ACCELEROMETER)

SPI INTERFACE
 Simple 4-wired synchronous (clock is transmitted) serial interface.
 SPI logic signals:

 SCLK: Serial clock. Generated by Master.
 MOSI: Master Output, Slave Input. Generated by Master.
 MISO: Master Input, Slave Output. Generated by Slave.
 /CS: Chip select (or Slave Select). Generated by Master.

 Messages are supported that are multiple of 8 bits.
 Clock polarity (CPOL) and Phase (CPHA):

 CPOL = 0: Base value of SCLK is 0.

 CPHA=0: Data is captured on rising edge, data is output on falling edge.
 CPHA=1: Data is captured on falling edge, data is output on rising edge.

 CPOL = 1: Base value of SCLK is 1.
 CPHA=0: Data is captured on falling edge, data is output on rising edge.
 CPHA=1: Data is captured on rising edge, data is output on falling edge.

 It is commonly used for short distance communications within embedded systems. Microcontrollers and FPGA designs use

SPI to communicate with internal/external peripherals. Large variety of SPI-capable peripherals available: sensors (e.g.:
temperature, pressure), ADCs, DACs, touchscreens, memories, LCDs, SD cards.

ACCELEROMETER ADXL362
 This 3-axis MEMS device operates as a SPI slave device. We read/write data via a register-based interface: we can write/read

a byte or many bytes per bus transaction.
 ADXL362 parameters (range, resolution, ODR are selectable):

 Range:  2g (default at reset),  4g,  8g.

 Resolution: 1mg/LSB (default at reset), 2 mg/LSB, 4 mg/LSB
 Output data rate (ODR): 12.5 – 400 Hz. Default at reset: 100 Hz.
 Output resolution: 12 bits. Representation: signed.

 CPOL = 0, CPHA = 0. Many SPI devices work very similarly, although we need to comply with specific timing parameters.

Accelerometer: Basic Controller (code available here)
 Operation: We first configure the appropriate ADXL362 registers and then proceed to read 8-bit registers. A simple

operation mode is listed here. Refer to the ADXL362 datasheet for a complete list of registers and operation modes.

 Reset the ADXL362. Write 0x52 on SOFT_RESET (0x1F) register.

 Activate measurement mode. Write 0x02 on POWER_CTL (0x2D) register.

 Read any 8-bit register (one per bus transaction). See ADXL362 datasheet for complete list.

 The basic controller is depicted on the right. The

block wr_reg_adxl362 is the most important: it
handles the SPI communication based on address,
data and write/read decision. Asserting the 𝑠𝑡𝑎𝑟𝑡
signal initiates a transaction. When the operation is
completed, the signal 𝑑𝑜𝑛𝑒 is asserted for one clock

cycle. If reading data, it appears on 𝑜𝑑𝑎𝑡𝑎. A new

transaction can be started on the next cycle after
𝑑𝑜𝑛𝑒 = 1.

MOSI

ADXL362

MISO

Artix-7 FPGA
Nexys-4 DDR

F14

E15

/CS

SCLK

D15

F15

MasterSlave

SCLK (CPOL=0)

MOSI/MISO (CPHA=0)

SCLK (CPOL=1)

/CS

MOSI/MISO (CPHA=1)

MSB or LSB LSB or MSB

done

sel
2

8
start
wr_rd

wr_reg_adxl362

odata

/CS MOSI MISO SCLK

FSM address

data

8

8

done E_odata

D

E

Q
8

E_odata

clock

resetn

done O
D

A
T

A
_R

E
G

SCLK_T

http://www.secs.oakland.edu/~llamocca/VHDLforFPGAs.html

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-378: Computer Hardware Design Winter 2017

3 Instructor: Daniel Llamocca

 FSM: It issues commands to configure the 2 ADXL362 registers and
then read (cyclically) from one of four 8-bit ADXL362 registers

(selected by the sel input). Data is fetched on the output register.

Here, we can read the low-precision 8-bit X, Y, Z measurements

(0x08, 0x09, 0x0A) and the Status Register (0x0B).

 wr_reg_adxl362: This circuit handles the SPI communication with

the ADXL362. The user provides address, data, and read/write.
Then, a read/write SPI transaction is executed. At every transaction,
we write or retrieve 8 bits of data. When writing to the ADXL362, 3

bytes are transmitted: |command|address|data|. When reading

from the ADXL362, 2 bytes are transmitted |command|address|,

and 1 byte is read (data) and placed on odata.

 Circuit Design: It involves implementing the SPI protocol and
complying with the ADXL362 timing parameters (see datasheet):
 CSS (/CS Setup Time): 100 ns
 tCSH (/CS Hold Time): 20 ns
 tCSD (/CS Disable Time): 20 ns
 tSU (Data Setup Time) = tHD (Data Hold Time): 20 ns
 fSCLK: 2.4 (only when using FIFO) – 8000 KHz.
 tHIGH (SCLK High Time) = tLOW (SCLK Low Time) = 50 ns.

Note that these times only constrain the duty cycle when
using large frequencies. The maximum frequency is 8 MHz.

 SCLK: not defined by the standard (usually a few MHz). This is
specified by the Slave Device (ADXL362: fSCLK  8000 KHz).

 This design uses a free running SCLK. To comply with the timing
parameters: TSCLK-(tCSD+tCSH)  CSS  TSCLK  280 ns (fSCLK  3.57

MHz). For TSCLK=280 ns, we have SCLK_T = 28 (at clock=100

MHz) as the minimum possible value.
 To display data on LEDs or 7-segment displays, you need an

appropriate refreshment rate. We can choose TSCLK=1 ms

(fSCLK=1 KHz)  SCLK_T=106. Since there are 24 SCLK periods

in a reading transaction, data is refreshed at 24 ms per sample.
 FSM_SCLK: It generates a free running clock of period SCLK_T

and 50% DC along with rising and falling edge detectors.

S1
resetn=0

address  0x1F

data  0x52

wr_rd  1, start  1

0

1

address  0x08

done

S2

S3

address  0x2D

data  0x02

wr_rd  1, start  1

0

1

done

S4

S5

data  0xXX

wr_rd  0, start  1

address  0x09 address  0x0A

address  0x0B

11
sel

00

01 10

01
done

S6

E_odata  1

FSM_MAIN
wr_rdq

zR
zF

Ei Ed Ea Eo

/CS

E

L

LEFT

E

L

LEFT

E

L

LEFT

1

s

2

0

2

8

8

01

0x0A 0x0B

wr_rd

w
r_

rd
q

dout

dout

dout

command

write read

Ei

address

data

Ea

Ed

E

LEFT

din
Eo

8

E

L

MISO

Q

counter

0 to 7

E

sclr z
zQ

E
Q

sc
lr
Q

FSM_SCLK

start SCLK

Q

counter 0 to

SCLK_T/2-1

E

sclr z
zT

E
T

sc
lr
T

zR

zF

MOSI

wr_reg_adxl362

S1
resetn=0

ET, sclrT  1

0

1

SCLK  0

zT

S2

S3

ET  1

ET, sclrT  1

zR  1

SCLK  1

0

1

zT ET  1

ET, sclrT  1

zF  1

(T  0)

(T  0)

(T  T+1)

(T  T+1)

0

1

start

(T  0)

FSM_SCLK

L

done

odata

start

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-378: Computer Hardware Design Winter 2017

4 Instructor: Daniel Llamocca

 FSM_MAIN: handles the SPI communication and complies with the ADXL362 timing parameters. Command, address,
data (MSB is sent first), same when reading. Note that TCSD = TCSH = 2 (20 ns).
To comply with the timing parameters, we always wait until the last falling edge in a reading or writing cycle, then wait
for TCSH cycles, set /CS=1 for TCSD cycles and then we are back in State S1 for a new transaction.
Note how we embed the counters for qTCSD and qTCSH inside the FSM.

 Other approaches do not have a free running SCLK, but instead they only activate it when /CS=0. This approach might
make the controlling of the timing parameters simpler (depending on the timing parameters).

S1
resetn=0

/CS  1

0

1

s  0

zF

S2

Ei  1

0

1

start

L  1

Ei, Ea, Ed  1

0

1

zQ EQ  1

EQ, sclrQ  1

0

1

s  1

zF

S3

Ea  1

0

1

zQ EQ  1

EQ, sclrQ  1

1

0

wr_rdq

S5

S4

0

1

s  2

zF

S4

Ed  1

0

1

zQ EQ  1

EQ, sclrQ  1

0

1

zR

S5

Eo  1

0

1

zQ EQ  1

EQ, sclrQ  1

01
zF

S6

S7

no

yes

qTCSH  qTCSH +1

qTCSH  0

/CS  1

S8

no

yes

qTCSD  qTCSD +1

done  1

qTCSD  0

1

0

start

S1

qTCSH=TCSH-1

qTCSD=TCSD-1

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-378: Computer Hardware Design Winter 2017

5 Instructor: Daniel Llamocca

I2C (TEMPERATURE SENSOR)

I2C (Inter-Integrated Circuit) INTERFACE
 Simple 2-wired synchronous (clock is transmitted) serial interface.
 I2C logic signals:

 SCL: Serial clock. Generated by Master, defined by the Slave device. The standard
specifies a Fast Mode (up to 400 KHz), a High Speed Mode (up to 3.4 MHz), and
an Ultra-Fast Mode (up to 5 MHz).

 SDA: Bi-directional serial data.
 In general, SCL and SDA are open-drain. There can be one Master and many Slaves.

The Master device puts the slave address on the bus, and the slave device with the
matching address acknowledges the Mater.

 Slave Address: Unique identifier of a device. 7-bits wide.
 Communication on the I2C bus:

 It starts when the master puts the START condition (S) on the bus (a high-to-low transition on SDA while SCL is high).
The bus is considered to be busy until the Master puts a STOP condition (P) on the bus (a low-to-high transition on SDA
while SCL is high).

 I2C data: Transferred in 8-bit packets. There is no restriction to the number of bytes transmitted per data transfer. Each

byte transferred must be followed by an acknowledge signal (ACK). ACK (0) is generated by the Slave.
 After a START condition (S), the Master writes the 7-bit Slave Address followed by a Read/Write bit, then ACK. Then, the

Master writes/reads bytes of data, each byte followed by an ACK. When writing, after the last written byte (followed by
ACK), data transmission is terminated by the Master with a STOP condition (P). When reading, only on the last byte, the
Master must generate a NACK (Not acknowledge) bit, and then a STOP condition (P). The Master can also generate a
repeated START condition (Sr) without first generating a STOP condition (P) to signal that the bus is still busy.

 Data bits are read on the SCL rising edge. We must comply with the Slave device timing parameters: tSU:DAT, tHD:DAT,
tSU:STA, tHD:STA, tSU:STO. Unlike a flip flop, tHD:DAT (hold time) is defined as the time the data bit should be on the bus after
SCL is high (i.e., after the falling edge).

 I2C is commonly used for attaching lower-speed devices to processors and microcontrollers in short-distance, intra-board

communication. Large variety of I2C-capable peripherals available: sensors (e.g.: temperature, acceleration, pressure), ADCs,
DACs, touchscreens, memories, LCDs, SD cards.

TEMPERATURE SENSOR ADT7420
 This high accuracy digital temperature sensor operates as an I2C slave device. We read/write data via a register-based

interface: we can write/read a byte or two bytes per bus transaction.
 ADT7420 parameters (resolution is selectable):

 Output resolution: 13 bits (default at reset), 16 bits. Representation: FX signed.

 Resolution: 0.0625C per LSB (13-bit mode, default at reset), 0.0078125C per LSB (16-bit mode).

 16-bit mode: FX Format [16 7]. Temperature (C):
−215𝑏15+∑ 𝑏𝑖2𝑖14

𝑖=0

27

 13-bit mode: FX Format [13 4]. This is just the 13 MSBs of the 16-bit result. Temperature (C):
−212𝑏12+∑ 𝑏𝑖2𝑖11

𝑖=0

24

 According to the formulas, the temperature range is [−256C, 256C). However, in practice the ADT7420 is

guaranteed to measure temperature between -40C and 150C.

 Slave Address: 10010A1A0. A1A0 bits are configurable. Nexys-4 DDR-Board: A1A0 = 11  Slave Address: 0x4B.

Temperature Sensor: Basic Controller (code available here)
 Operation: We first configure the appropriate ADT7420 registers and then proceed to read 8-bit registers. A simple

operation mode is listed here. Refer to the ADT7420 datasheet for a complete list of registers and operation modes.

 Configure the 16-bit mode. Write 0x80 on CONFIG (0x03) register.

 Read any 8-bit register (one per bus transaction).

ADT7420

Artix-7 FPGA
Nexys-4 DDR

SCL

SDA

C14

C15

MasterSlave

3.3v

D0D7 D6 D5 D4 D3 D2 D1

A0

R/W

A0 R/WA5 A4 A3 A2 A1 ACK

S

SCL

A6 ACKD7 D6 D5 D4 D3 D2 D1 D0

tHD:STA tSU:STO

A0A5 A4 A3 A2 A1 ACKA6 NACK

tHD:DAT tSU:DAT

SDA

SDA

P

R/W D0A3 A2 A1 ACK D7 D6 D5 D4 D3 D2 D1SDA ACK

SCL

A5 A4A6... ...

Sr

tSU:STA

http://www.secs.oakland.edu/~llamocca/VHDLforFPGAs.html

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-378: Computer Hardware Design Winter 2017

6 Instructor: Daniel Llamocca

 The Basic Controller interacts with the following registers: (refer to the ADT7420 datasheet for a complete list of registers).
Reg. Address Name Reg. Address Name

0x00 TEMP_H 0x03 CONFIG

0x01 TEMP_L

0x02 STATUS 0x0B ID

 13-bit mode: This requires to write 0x00 on CONFIG register. The 13-bit data will be located in the 13 MSBs of the 16-

bit sequence: TEMP_H|TEMP_L.

 Reading from the ID register results in 0xCB (manufacturer’s setting)

 Communication Protocol: This protocol runs on top of I2C. Writing/reading here refer to the process of writing/reading

to/from a register. This is a bit different from writing/reading data onto the I2C bus (what the I2C protocol specifies).
RA: ADT7420 internal Register Address of ADT7420. AD: Slave (ADT7420) I2C Address (0x4B). NACK: Not Acknowledge (1),

set by Master, ACK: Acknowledge (1). W: Write bit (0). R: Read bit (1). For AD, RA, DATA, MSB is sent first.

 Single-byte Write Sequence:
Master S AD (7-bit) W RA (8-bit) DATA (8-bit) P

Slave ACK ACK ACK

 Single-byte Read Sequence:
Master S AD (7-bit) W RA (8-bit) Sr AD (7-bit) R NACK P

Slave ACK ACK ACK DATA (8-bit)

 The basic controller is depicted on the right. The block

wr_reg_adt7420 is the most important: it handles
the I2C communication based on address, data and
write/read decision. Asserting the 𝑠𝑡𝑎𝑟𝑡 signal initiates

a transaction. When the operation is completed, the
signal 𝑑𝑜𝑛𝑒 is asserted for one clock cycle. If reading
data, it appears on 𝑜𝑑𝑎𝑡𝑎. A new transaction can be

started on the next cycle after 𝑑𝑜𝑛𝑒 = 1.

 FSM: It issues commands to configure one ADT7420

register (CONFIG) and then read (cyclically) from two of four 8-
bit ADT7420 registers (selected by the sel input). Data is fetched

on the output registers. Here, we can read the STATUS and ID

registers (0x02, 0x0B), or TEMP_H and TEMP_L (0x01, 0x00).

 wr_reg_adt7420: This circuit handles the I2C communication

with the ADT7420. The user provides address, data, and
read/write. Then, a read/write SPI transaction is executed. At
every transaction, we write or retrieve 8 bits of data.
 Circuit Design: It involves implementing the I2C protocol and

satisfying the ADT7420 timing parameters (see datasheet):
 tSU:DAT (Data Setup Time): 0.02 us.
 tHD:DAT (Data Hold Time): 0.03 us.
 fSCLK  400 KHz.

 tHD:STA (Hold Time – Start Condition): 0.6 us. Time SCL
must be 1 after SDA falling edge.

 tSU:STA (Setup Time – Start Condition): 0.6 us. Time SCL
must be 1 before SDA falling edge.

 tSU:STO (Setup Time – Stop Condition): 0.6 us. Time SCL
must be 1 before SDA rising edge.

 tBUF (Bus-Free Time  Start and Stop Condition): 1.3 us.

 For fSCL  400 KHz (TSCL  2.5 us), we have SCL_T  125 (at

clock = 100 MHz).
 To display data on LEDs or 7-segment displays, you need an

proper refreshment rate. We pick TSCLK=1 ms (fSCLK=1 KHz) 

SCLK_T=50103. There are about 35 SCL periods in a reading

transaction, thus data is refreshed at 35 ms per sample.
 FSM_SCL: It generates a clock of period SCL_T and 50% DC

along with rising and falling edge detectors. It also issued a
delayed falling edge detection signal zFhd: This is to allow

data to be kept for tHD:DAT after the falling edge. The clock
stops after the STOP condition (P) is issued.

done

sel

8
start
wr_rd

wr_reg_adt7420

odata

SCL SDA

FSM address

data

8

8

done E_l

E

8

E_h

clock

resetn

done

O
D

A
T

A
_H

SCL_T

E_h

E

8

E_l

O
D

A
T

A
_L

er

err
err

err

S1
resetn=0

address  0x03

data  0x80

wr_rd  1, start  1

0

1

address  0x02

done

S2

S3

data  0xXX

wr_rd  0, start  1

address  0x01
1

sel
0

01
done

S4

E_l  1

address  0x0B

S5

data  0xXX

wr_rd  0, start  1

address  0x00
1

sel
0

01
done

S6

E_h  1

1
err

0

er  0 er  1

1
err

0

er  0 er  1

1
err

0

er  0 er  1

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-378: Computer Hardware Design Winter 2017

7 Instructor: Daniel Llamocca

 FSM_ACK: It handles the detection of the Acknowledge bit (ACK), which is generated by the Slave. This operation is
repeated at many points in the design, thus we decided to have a separate FSM.

E
T

FSM_MAIN

wr_rdq

zR
zF

zFhd

Ei Ed Ea Eo

SDA

E

L

LEFT

E

L

LEFT

E

L

LEFT

1

s

2

0

2

8

8

0x4B

wr_rd
wr_rdq

dout

dout

dout

Ei

address

data

Ea

Ed

E

LEFT

din
Eo

8

E

Ewr

SDAi

Q

counter

0 to 7

E

sclr z
zQ

E
Q

sc
lr
Q

FSM_SCL

so

start_scl
stop_scl

Q

counter 0 to

SCL_T/2-1

E

sclr z
zTsc

lr
T

zR

wr_reg_adt7420

S1 resetn=0

SCL  1

ET, sclrT  1

0

1

SCL  1

zT

S2

S3

ET  1

ET, sclrT  1

zF  1

SCL  0

0

1

zT ET  1

ET, sclrT  1

zR  1

(T  0)

(T  0)

(T  T+1)

(T  T+1)

0

1

start_scl

(T  0)

FSM_SCL

L

done

odata

start

swr

so

T

FSM_ACK

err

st

0

Ewr sw
r

start_scl

stop_scl

zF zFhd

0
SCL

zR zFhd

SDAo

SDAoe

1

0

stop_scl

yes
T=THD-1 zFhd  1

no
dn

S1
resetn=0

0

1

zR

S2

S3

01
zFhd

0

1

st

FSM_ACK

1

0

SDAi err  1

dn  1

ACK

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-378: Computer Hardware Design Winter 2017

8 Instructor: Daniel Llamocca

 FSM_MAIN: It handles the I2C communication and complies with the ADT7420 timing parameters. Note that TBUF = 3
(30 ns). Also, data is kept for tHD:DAT after the falling edge of SCL (that is why we have the signal zFhd, which is issued

after tHD:DAT). Note that when the Slave is writing data, SDAoe=1.

S1

resetn=0

stop_scl  1,

SDAo  1

0

1

SDAo  so,

s  0

zFhd

S2

Ei  1

0

1

start

start_scl  1

L,Ei, Ea, Ed, Ewr  1

0

1

zQ EQ  1

EQ, sclrQ  1

0

1

zFhd

S4

Ea  1

0

1

zQ EQ  1

EQ, sclrQ  1,

st  1

1

0

wr_rdq

S8

S6

0

1

SDAoe  so,

s  2

zFhd

S6

Ed  1

0

1

zQ EQ  1

0

1

zFhd

S10

Ei  1

0

1

zQ EQ  1

EQ, sclrQ  1

SDAo  1

S9

no

yes

qTBUF  qTBUF +1

SDAo  0,

start_scl, Ei, L  1

S1

qTBUF=TBUF-1

0

1

SDAo  0

zFhd

S3

st  1

0

1

SDAoe  1

dn

S3a

SDAo  so,

s  1

0

1

SDAoe  1

dn

S5

EQ, sclrQ  1,

st  1

0

1

SDAoe  1

dn

S7

0

1

SDAo 

not(wr_rdq)

zF

S8

stop_scl  1

SDAo  1

0

wr_rdqdone  1
1

qTBUF  0

S10

SDAoe  so,

s  0

0

1

SDAo  1

zFhd

S11

st  1

0

1

SDAoe  1

dn

S12

0

1

zR

S13

Eo  1

0

1

zQ EQ  1

EQ, sclrQ  1

SDAoe  1

0

1

zFhd

S14

SDAoe  1

0

1

zFhd

S15

Ewr, swr  1

SDAo  1

S8

R/W=0

ACK

R/W=1

S1

1
err

0

S1

1
err

0

S1

1
err

0

S1

1
err

0

ACK

STOP
condition

if wr_rdq=1

SCL will stay at '1'
because stop_scl='1'

right when zF='1'

NACK

wr_rdq is forced
to '1' so we can exit

ACK

START
condition
and 7-bit

Slave
Address

Slave
Address

0x4B

Write
Register
Address

ACK

Write
Data

Read
Data

Wait until
falling edge

Wait tBUF

before a new
transfer can
be started

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-378: Computer Hardware Design Winter 2017

9 Instructor: Daniel Llamocca

PULSE-WIDTH MODULATION (PWM)

DEFINITION
 We generate a square wave where we control the Duty Cycle. Duty Cycle is specified as a percentage: from 0 to 100%.
 PWM can be used to vary the average voltage on an output pin. This can be useful (in lieu of a DAC) to control the brightness

of an LED, speed of a DC motor, volume of a tone in a speaker, etc.

DIGITAL SYSTEM FOR PWM (code available here)
 𝑇𝑃𝑊𝑀 (Period of PWM signal in units of 𝑇𝑐𝑙𝑜𝑐𝑘): This is a parameter in the VHDL code. 𝑇𝑃𝑊𝑀 > 2

𝑇𝑃𝑊𝑀 = 𝑇𝑃𝑊𝑀 ∗
1

𝑓𝑐𝑙𝑜𝑐𝑘
.

For 𝑓𝑐𝑙𝑜𝑐𝑘 = 100 𝑀𝐻𝑧:

𝑇𝑃𝑊𝑀 = 500  𝑓𝑃𝑊𝑀 = 200 𝐾𝐻𝑧

𝑇𝑃𝑊𝑀 = 50000  𝑓𝑃𝑊𝑀 = 2 𝐾𝐻𝑧

 DC (Duty Cycle): Input signal with 𝑛𝐷𝐶 bits. 𝑛𝐷𝐶 = ⌈log2[𝑇𝑃𝑊𝑀 + 1]⌉

DC  [0, TPWM]. Note that DC is not specified from 0 to 100%, but rather

from 0 to TPWM. Note that the “step” of the DC depends on 𝑓𝑐𝑙𝑜𝑐𝑘. An

external circuit can retrieve the Duty Cycle in standard terms (0-100%)
and convert it to 0 to TPWM.

TRI-COLOR LEDS
RGB color can be controlled by varying (via PWM) the brightness of a Red, Green, and
Blue LEDs. We want to control the DC of each color component using NB=4 bits. So,
we need to map a signal from 0 to 2NB-1 to a signal from 0 to TPWM. Mapping formula:

𝐷𝐶(0 → 𝑇𝑊𝑃𝑀) = ⌊
𝑇𝑃𝑊𝑀

2𝑁𝐵 − 1
× 𝐷𝐶(0 → 2𝑁𝐵 − 1)⌋ ≈ ⌊

𝑇𝑃𝑊𝑀 × 𝐷𝐶(0 → 2𝑁𝐵 − 1)

2𝑁𝐵
⌋

DIGITAL CIRCUIT (code available here)
 Mapping circuit: The approx. formula optimizes hardware: we multiply and then

drop NB LSBs. DC (0-TPWM) never reaches TPWM, but the approx. is good enough.
 PWM frequency: 2 KHz (TPWM=50000, 𝑓𝑐𝑙𝑜𝑐𝑘 = 100 𝑀𝐻𝑧) provides a good color

variation. A high frequency breaks the linearity between the brightness and the DC.
 We can use more bits per color component, but we need more input signals. For NB=4, refer to hex tables (higher nibble).

MONO AUDIO OUTPUT
 Nexys-4 (DDR) Board: An analog low pass filter (connected after AUD_PWM) turns a PWM signal with varying DC (DC goes

from 0 to 100% and back) into a sinusoid. Use NB=8 bits.

DIGITAL CIRCUIT (code available here)
 Shaded circuit: It generates a square wave and it can be

connected to a buzzer or speaker, though we can only vary
DC ( volume). Only frequency can change the tone, i.e., we

need a new circuit where TWPM is an input signal.
 CTL: It produces a varying 8-bit DC (02550, …). This

allows the integrator to generate a sinusoidal wave. The

variation rate is controlled by frq, i.e., we can pick from 8 sinusoidal frequencies.

 AUD_PWM: Open-drain output. AUD_SD: Analog filter shutdown input (via the AD8592 opamps). TPWM = 1000 (100 KHz).

PWMR
4 n

D
C

TPWM

RLED

GLED

BLED

TPWM

PWMG
4 n

D
C

PWMB
4 n

D
C

E_DC

FSM

Q

counter 0 to

TPWM-1

E

sclr

E
Q

sc
lr
Q

DC

n
D

C

oPWM

DCq
n
D

C
E

TPWM
S1

resetn=0

EQ, sclrQ  1

E_DC  1

 TPWM

oPWM  0

DCq

S2

S3

E_DC  1,

oPWM  1

oPWM  1, EQ  1

oPWM  1,

EQ  1

no

yes

Q=DCq-1

(Q  0)

(Q  Q+1)

E_DC  1
= 0

[1,TPWM-1]

DCq=1

no

yes

S4

oPWM  0

no
Q=TPWM-1 EQ  1

EQ, sclrQ  1

E_DC  1

yes

(Q  Q+1)

(Q  Q+1)
(Q  0)

PWM

8

n
D

C

TPWM

A
U

D
_
P
W

M

TPWM

0

AUD_SDSD

frq
3

QEPE

sclr

0255

0213-1

P TM

TM13

1

frq
3

2frq+6-1

8

CTL LUT

CTL

http://www.secs.oakland.edu/~llamocca/VHDLforFPGAs.html
http://www.secs.oakland.edu/~llamocca/VHDLforFPGAs.html
http://www.secs.oakland.edu/~llamocca/VHDLforFPGAs.html

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-378: Computer Hardware Design Winter 2017

10 Instructor: Daniel Llamocca

PULSE DENSITY MODULATION (PDM)

DEFINITION
 Popular in mobile devices, only 1 bit is required. 1-bit signal is oversampled.
 The amplitude of a signal is represented by the relative density of the pulses: the closer the pulses are, the larger the

amplitude. Unlike PWM, the frequency of the pulses is not fixed.
 A PDM signal can be generated from an analog signal by using a sigma-delta modulator.
 Once PDM data is obtained, the analog signal can be recovered by passing the signal through an analog low-pass filter:

 If we want to get the PCM (pulse-code modulation)-coded signal to apply digital signal processing operations, we require a

digital decimation filter. The figure depicts a PDM signal oversampled by a factor of 𝑁 (over the Nyquist rate). The decimation

filter outputs a signal 𝑥[𝑛] (16 bits per sample) sampled at the Nyquist rate. To recover the analog signal from 𝑥[𝑛], a DAC

(digital-to-analog converter) is required.

MICROPHONE
 ADMP421: MEMS Microphone with PDM output

 CLK: 1 – 3 MHz. Recommended: 2.4 MHz.
 DATA: PDM signal (oversampled data)
 L/R: Left right stereo input control. L/R=0: Data captured on CLK rising edge. L/R=1: Data captured on CLK falling edge.
 Many MEMS microphones (e.g.: ADMP521, MP34DT02) feature a similar synchronous interface.

 ADMP421: Synchronous interface. Make sure to comply with the timing parameters (see ADMP421 datasheet).

 Once PDM data is obtained, the audio signal can be played back by passing the signal through an analog low-pass filter.

AUDIO OUT
 Nexys-4/Nexys-4 DDR: The on-board audio jack is driven by an analog low-pass filter. The input then can be a PDM or PWM

signal. The cut-off frequency is about 12 KHz. Stereo output is not supported.
 AUD_PWM: Open-drain output. AUD_SD: Analog filter shutdown input (via the AD8592 opamps).

AUDIO CAPTURE AND PLAYBACK ON THE NEXYS-4 DDR BOARD
 The figure depicts the connection between the MEMS microphone, the Artix-7 FPGA, and the mono audio output.

DIGITAL CIRCUIT
 As stereo output is not supported, we only retrieve a mono audio input

from the ADMP42 microphone (e.g. L/R = 0).
 Main frequency (Nexys-4 DDR Board): 𝑓𝑐𝑙𝑜𝑐𝑘 = 100 𝑀𝐻𝑧, 𝑇𝑐𝑙𝑜𝑐𝑘 =

10 𝑛𝑠.

CLK

DATAL/R SEL=0

DATAL/R SEL=1

pulse pulse

pulse pulse

+
Digital

Decimation
Filter

PDM signal 16

FPDM FPDM / N

N=64,128oversampled signal
by a factor of N

CLK

ADMP421

DATA

Artix-7 FPGA
Nexys-4 DDR

J5

H5

L/R SEL F5

AUD_PWM

AUD_SD

A11

D12

PDM_IN

SCLK

LR

+
Analog

Lowpass
Filter

PDM signal

Reconstruction filter

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-378: Computer Hardware Design Winter 2017

11 Instructor: Daniel Llamocca

Basic approach
 The figure depicts a simple circuit that reads data in a shift

register and immediately outputs the data. The rate at which
data is shifted in and out is given by SCLK. Be aware of
feedback when using this circuit.

 FSM_SCLK: It generates a free running clock of period

SCLK_T and 50% DC along with rising and falling edge

detectors. With an input clock of 100 MHz, we have that:

 For SCLK = 1 MHz  𝑆𝐶𝐿𝐾_𝑇 =
1

1×106

1

10×10−9 = 100.

 For SCLK = 3 MHz  𝑆𝐶𝐿𝐾_𝑇 =
1

3×106

1

10×10−9 ≈ 34.

 For SCLK = 2.4 MHz  𝑆𝐶𝐿𝐾_𝑇 =
1

2.4×106

1

10×10−9
≈ 42.

Memory-based approach
 Here, data is read into the shift register and then stored it in memory. We can then control when we shift data out. We

might also store several audio sequences and select when to play them. Data is shifted in and out at the rate given by SCLK.
 Memory: It can store up to 𝑁𝐷 16-bit words.

 Address size: 𝑁𝐴 = ⌈log2 𝑁𝐷⌉.
 Total number of bits: 𝑁𝐷 × 16 bits.

 Duration of the stored sequence: 𝑁𝐷 × 16 × 𝑆𝐶𝐿𝐾_𝑇 × 𝑇𝑐𝑙𝑜𝑐𝑘. For example if 𝑁𝐷 = 218 and SCLK_T=42 we have 1.7616s.

To increase the duration, we can increase SCLK_T (SCLK_T  100), or we can increase the memory size.

 The main control circuit (FSM_MEM) varies according to the type of memory used. The memory might not operate at the
same frequency or might have different input/output ports than the ones shown. For example:
 On-chip memory (BlockRAMs inside Artix-7 FPGAs): Easy to use. They operate at the same frequency (100 MHz), include

the I/O ports as in the figure, and behave as a bunch of registers: data requested/written is available on the next clock
cycle. But the capacity is limited (~ 0.5 MB in the XCA100T Artix-7 FPGA).

 External memories (e.g.: DDR2 RAM, Flash, SRAM): They require a different I/O interface and operating frequency;
however, they can hold much more data.

 The circuit requires a 16-bit shift register, a memory, and two state machines. The FSM_SCLK is also depicted.

FSM_MEMzR

LEFT

16

dout

Ep

T

counter

0 to 15

E

sclr z
zT

E
T

sc
lr
T

FSM_SCLK

start SCLK

Q

counter 0 to

SCLK_T/2-1

E

sclr z
zT

E
T

sc
lr
T

zR

zF

S1
resetn=0

ET, sclrT  1

0

1

SCLK  0

zT

S2

S3

ET  1

ET, sclrT  1

zR  1

SCLK  1

0

1

zT ET  1

ET, sclrT  1

zF  1

(T  0)

(T  0)

(T  T+1)

(T  T+1)

0

1

start

(T  0)

FSM_SCLK

ready_out

AUD_PWM
0

AUD_SD
in_RAMgen

ND words

in

address
en

we

16 16

16

din

E L

PDM_IN

start

'1'

NA

Lpsi R
A
M

_
w

e

R
A
M

_
a
d
d
re

ss

0
LR

out

LEFT

dout

zR

FSM_SCLK

'1' SCLK

Q

counter 0 to

SCLK_T/2-1

E

sclr z
zT

E
T

sc
lr
T

zR

zF

AUD_PWM
0

AUD_SD

16

din

E

PDM_IN

on

16

0
LR

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-378: Computer Hardware Design Winter 2017

12 Instructor: Daniel Llamocca

 FSM_MEM (using BlockRAMs inside Artix-7 FPGAs): Note how we embed the counter for RAM_address inside the FSM.

S1
resetn=0

si  1

0

1

si  1

zR

S2

Ep  1

0

1

start

0

1

zT ET  1

ET, sc;rT  1

si  1,

RAM_we  1

S3

no
RAM_address=ND-1 RAM_address  RAM_address+1

RAM_address  0

yes

0

1

si  1

zR

S4

Ep, Lp  1

RAM_address  RAM_address+1

S5

(T  T+1)

(T  0)

0

1

ready_out  1,

AUD_SD  1

zR

S5

Ep  1

0

1

zT ET  1

ET, sc;rT  1,

Lp  1

no
RAM_address=ND-1 RAM_address  RAM_address+1

RAM_address  0

yes

yes
RAM_address=0

no

(T  0)

(T  T+1)

